خوارزمية شوور

من موسوعة العلوم العربية
اذهب إلى التنقل اذهب إلى البحث
لم تعد النسخة القابلة للطباعة مدعومة وقد تحتوي على أخطاء في العرض. يرجى تحديث علامات متصفحك المرجعية واستخدام وظيفة الطباعة الافتراضية في متصفحك بدلا منها.

خوارزمية شوور هي خوارزمية كنتيكية ل التفكيك لعدد طبيعي N في زمن O((log N)3) وفي مساحة O(log N), تحمل اسم Peter Shor.

العمليات

ليكن N عدد طبيعي معطى، نحاول إيجاد عدد آخر p محصور بين 1 وN ويقسم N.

خوارزمية شوور مقسمة إلى قسمين :

  1. اختصار مشكلة التفكيك إلى مشكلة الترتيب (نظرية المجموعات), والتي يمكن تطبيقها باستعمال حاسوب عادي.
  2. خوارزمية كانتيكية لحل مشكلة البحث عن الدور.

المرحلة الكلاسيكية

  1. أخد عدد شبه عشوائي a < N
  2. حساب pgcd(a, N). والتي يمكن ايجادها باستعمال خوارزمية اقليدس.
  3. إذا كان pgcd(a, N) ≠ 1, إذن سيكون قاسما فعليا N, يعني نهاية الخوارزمية.
  4. وألا, استعمال البحث عن الدور (انظر أسفله) لإيجاد r, دالة دورية للدالة الآتية :
    ,
    يعني. أصغر عدد صحيح طبيعي r بحيث .
  5. إذا كان r فردي, نعود للمرحلة 1 1.
  6. إذا كان a r/2 ≡ -1 [N], نعود للمرحلة 1.
  7. قواسم N هي pgcd(ar/2 ± 1, N). انتهى.

اقرأ أيضاً