حسبان بمتعددات الحدود

من موسوعة العلوم العربية
مراجعة 21:16، 12 نوفمبر 2010 بواسطة WikiSysop (نقاش | مساهمات) (١ مراجعة: الصفحات في تصنيف رياضيات)
(فرق) → مراجعة أقدم | المراجعة الحالية (فرق) | مراجعة أحدث ← (فرق)
اذهب إلى التنقل اذهب إلى البحث

في الرياضيات, تُعتبر متعددات الحدود من أبسط الدوال المستعملة في الحسبان. وتُعطى مشتقاتها وتكاملها الغير محدود بواسطة القوانين التالية:

و

.

لذلك, تكون مشتقة هي والتكامل الغير محدود للقيمة هو حيث أن C هو الثابت الكيفي للتكامل.

سنذكر في هذه المقالة قاعدة القوة power rule للتفاضل وبرهانها, ومن ثم سنستعملها لبرهنة الصيغتين الموجودتين في الأعلى.

قاعدة القوة

تذكر قاعدة القوة للتفاضل بأنه إذا كان n هو عدد طبيعي, تكون مشتقة هي , وبالتالي تكون القاعدة هي

و قاعدة القوة للتكامل هي

عندما يكون n عدد طبيعي, سيسهل لنا استنتاج الإجابة. ويبقى على المرء فقط القيام بإشتقاق هذه المتباينة واستعمال قاعدة القوة والتحويل الخطي للتفاضل على الجانب الأيمن من المعادلة.

البرهان

لبرهنة قاعدة القوة للتفاضل, يجب استعمال طريقة الإشتقاق كنهاية رياضياتية:

و عند تعويض ستكون المعادلة على النحو التالي

ثم يمكن للمرء التعبير عن باستعمال مبرهنة ثنائية الحد للحصول على

يمكن كتابة الحد من المجموع في جهة مستقلة للحصول على

و بسبب إلغاء قيم الحدود ستكون المعادلة

و يمكن إخراج قيمة من جميع الحدود من المجموع للحصول على

و بذلك يمكننا إلغاء قيم من المقام والحصول على

و لإيجاد قيمة هذه النهاية نلاحظ بأن لكل وتساوي صفر لكل لذلك نجد قيمة فقط عندما يكون , وبالتالي تكون المعادلة

و بإيجاد قيمة المعامل الثنائي الحد سنجد هذه المعادلة

و بالتالي هذه المعادلة

تفاضل متعددات الحدود الكيفية

لمفاضلة متعددات الحدود الكيفية, يمكن للمرء استعمال الخاصية الخطية للمؤثر التفاضلي differential operator للحصول على:

و باستعمال التحويل الخطي للتكامل وقاعدة القوة للتكامل, وباستعمال نفس الخطوات, سنجد المعادلة على النحو التالي

تعميم

يمكن للمرء بأن يبرهن بأن قاعدة القوة تكون صحيحة عند أي أس حقيقي, والمعادلة هي

عندما تكون قيمة a أي عدد حقيقي ما دام أن قيم x من مجال الدوال لكلا الجانبين من المعادلة. وباستعمال هذه الصيغة, مع

سيستطيع المرء القيام بمفاضلة ومكاملة التركيبات الخطية لقوى القيمة x, والتي ليست بالضرورة أن تكون متعددة الحدود.

المراجع

  • Larson, Ron; Hostetler, Robert P.; and Edwards, Bruce H. (2003). Calculus of a Single Variable: Early Transcendental Functions (3rd edition). Houghton Mifflin Company. ISBN 0-618-22307-X.

ca:Regla generalitzada de la derivada de la potenciació de:Potenzregel en:Calculus with polynomials ko:다항식의 미적분 pt:Cálculo com polinômios th:แคลคูลัสกับพหุนาม