الفرق بين المراجعتين لصفحة: «عدد»

من موسوعة العلوم العربية
اذهب إلى التنقل اذهب إلى البحث
ط (١ مراجعة: الصفحات في تصنيف رياضيات)
 
(لا فرق)

المراجعة الحالية بتاريخ 21:16، 12 نوفمبر 2010

قالب:أرقام

العدد يمكن تقسيم الأعداد إلى مجموعات تدعي بالأنظمة العددية.

أنواع الأعداد

الأعداد الطبيعية

الأعداد الأكثر ألفة لدينا هي الأعداد الطبيعية أو أعداد الحساب وهي واحد، اثنين، ثلاثة، الخ. في نظام العد العشري، شاع عالمياً استعمال عشرة ارقام لكتابة الأعداد العشرية وهي:0،1،2،3،4،5،6،7،8،9. في هذا النظام العشري يحصل الرقم في أقصى اليمين على قيمة أحادية بينما تتضاعف هذه القيمة 10 أضعاف كلما اتجهنا خانة إلى اليسار. رمز مجموعة الأعداد الطبيعية N وتُكتب كذلك .

في نظرية المجموعات، وهي النظرية القادرة على ان تعمل كأساس بديهي للرياضيات الحديثة، يمكن تمثيل الأعداد الطبيعية بفصل من المجموعات المساوية. مثلاً العدد 3 يمكن تمثيله بجميع المجموعات التي تحتوي على 3 عناصر. وهناك العديد من الطرق المختلفة لتمثيل العدد 3 ولكن كل ما نحتاج إليه لتمثيله قياسياً هو كتابة رمز محدد أو مجموعة رموز محددة، ثلاث مرات.

الأعداد الصحيحة

  • الاعداد الصحيحة هي الاعداد الموجبة والسالبة مع الصفر
  • الأعداد السالبة هي الأعداد الأقل من الصفر، وهي معاكسة للأعداد الموجبة. مثلاً: إذا كان عددٌ موجب يمثل وديعة بنكية، فإن العدد السالب يمثل النقود المسحوبة من نفس الكمية. تكتب الأعداد السالبة بإسباق إشارة سالبة-تسمى أيضاً علامة ناقص- للعدد الموجب المعاكس له. عليه فإن عكس العدد 7 هو 7-. عندما نوحد مجموعة الأعداد السالبة ومجموعة الأعداد الطبيعية والصفر فإننا نحصل على مجموعة الأعداد الصحيحة Z وتكتب كذلك .

الأعداد الكسرية

العدد الكسري هو عدد يمكن التعبير عنه بكسر ذو بسط صحيح ومقام طبيعي لا يساوي صفر. الكسر m/n أو

يمثل عدد m جزءاً متساوياً، في حين أن عدد n جزءاً منها تكون واحداً كاملاً. يمكن أن يشترك كسران في نفس القيمة للعدد الكسري، مثلاً 1/2 و 2/4 لهما نفس القيمة، بمعنى أن:

إذا كانت القيمة المطلقة للعددm أكبر من n فإن القيمة المطلقة للكسر تكون أكبر من 1. يمكن للكسور ان تكون أكبر من الواحد، أصغر منه، مساوية له، موجبة، سالبة، أو حتة صفراً. مجموعة الأعداد الكسرية تشمل الأعداد الصحيحة، لأن كل عدد صحيح يمكن التعبير عنه بكسر ذو مقام يساوي 1. مثلاً العدد 7- يكتب ككسر 1/-7. رمز الأعداد الكسرية Q وتكتب .

الأعداد الحقيقية

الأعداد الحقيقية تشمل جميع أعداد القياس، وتكتب غالباً بالتعداد العشري، والذي توضع فيه نقطة عشرية (فاصلة أحياناً) يمين الخانة العشرية ذات القيمة الأساسية 1، كل خانة يمين هذه النقطة العشرية لها قيمة اساسية واحد على عشرة - عُشر- قيمة الخانة السابقة لها من اليسار، عليه فإن:

يمثل: 1 مئة وعشرتين و3 آحاد و 4 أعشار و 5 من مئة و6 من ألف. في قراءة العدد نقول للنقطة العشرية فاصلة، أي: "مئة وثلاثة وعشرون، فاصلة، اريعمائة وستة وخمسون".

في الولايات المتحدة الأمريكية والمملكة المتحدة وعدد من البلدان الأخرى تمثل العلامة العشرية بنقطة، في حين أنها تمثل بفاصلة في قارة أوروبا وأغلب الدول العربية وبعض الدول الأخرى. الصفر في الأعداد الحقيقية يكتب 0.0 عند الضرورة للتأكيد على معاملته كعدد حقيقي وليس مجرد عدد صحيح. الأعداد الحقيقية السالبة تُسبق بإشارة ناقص:

كل عدد كسري هو عدد حقيقي يُحول بقسمة بسطه على مقامه ولكن العكس ليس صحيح: ليس كل عدد جقيقي هو كسري لأن هناك بعض الأعداد الحقيقية التي لا يمكن كتابتها في صورة بسط ومقام من أعداد صحيحة وهي تسمى أعداد لا كسرية. إذا امكن كتابة الجزء العشري من العدد الصحيح في صورة كسر فهو إما منتهي أو متكرر لانهائياً لأن هذه هي اجابة لمشكلة في القسمة، عليه يمكن كتابة 0.5 ككسر 1/2 وكذلك يُكتب...0.33333 (ثلاثة متكررة لانهائياً) ككسر 1/3 ومن جهة أخرى ،العدد الحقيقي π (باي) ،والذي هو نسبة محيط اي دائرة على قطرها، يساوي:

بما أن الجزء العشري لا ينتهي ولا يتكرر لانهائيا فانه يستحيل كتابة هذا العدد ككسر وهو مثال جيد للأعداد اللاكسرية. مثال آخر لها هو:

(الجذر التربيعي ل 2 هو العدد الموجب الذي مربعه يساوي 2).

عليه فإن 1.0 و 0.9999 هما طريقتين عشريتين مختلفتين لتمثيل نفس العدد الطبيعي 1، وهناك عدد لانهائي من الطرق المختلفة لتمثيل العدد 1، منها على سبيل المثال 2/2، 3/3، 1.00 ،1.000 وهكذا دواليك.

تصنف الأعداد الحقيقية إلى كسرية وغير كسرية، ولكل عدد حقيقي نقطة تمثله على خط الأعداد. تمتلك الأعداد الحقيقية خاصية مهمة ولكنها تقنية بالحد الأكبر وتسمى خاصية الحد العلوي الأصغر (Least Upper Bound- Supremum). رمز الأعداد الحقيقية هو R أو .

عندما يمثل العدد الحقيقي مقياساً فانه دائماً ما يكون هناك حد خطأ يتم التحصل عليه بتدوير Rounding أو بتر Truncating بعض الخانات العشرية، بحيث يتم التخلص من الخانات التي تعطي دقة أكبر من القياس. الخانات المتبقية تسمى الخانات الموثرة. فمثلاً، القياس بالمسطرة نادراً ما يتم بدون وجود حد خطأ 0.01 متر على الأقل. إذا كانت أطوال أضلاع مستطيل ما قيست كالتالي 1.23 متر و 4.56 متر فإن الضرب سيعطي ناتجاً لمساحة 5.6088 متر مربع. ولأن الخانات العشرية المؤثرة هي فقط الأولى والثانية بعد الفاصلة، فإن القيمة تُدور إلى 5.61.

في الجبر التجريدي الأعداد الحقيقية هي أقرب للتماثل وتتميز باتصافها بأنها المجال المرتب الكامل الوحيد، ولكنها بالرغم من ذلك لا تمثل مجالات مغلقة جبرياً.


an:Numero ang:Rīm ast:Númberu az:Ədəd bat-smg:Skaitlios be:Лік be-x-old:Лік bg:Число bjn:Wilangan bn:সংখ্যা br:Niver bs:Broj ca:Nombre ckb:ژمارە cs:Číslo cv:Хисеп cy:Rhif da:Tal de:Zahl el:Αριθμός en:Number eo:Nombro es:Número et:Arv eu:Zenbaki fa:عدد fi:Luku fiu-vro:Arv fo:Tal fr:Nombre fy:Getal gan:數 gd:Àireamh gl:Número he:מספר hi:संख्या hr:Broj ht:Nonm hu:Szám ia:Numero id:Bilangan io:Nombro is:Tala (stærðfræði) it:Numero ja:数 jbo:namcu ka:რიცხვი kab:Amḍan kk:Сан kn:ಸಂಖ್ಯೆ ko:수 (수학) ku:Hejmar la:Numerus lo:ຈຳນວນ lt:Skaičius lv:Skaitlis mg:Isa mhr:Шотпал mk:Број ml:സംഖ്യ ms:Nombor mwl:Númaro my:နံပါတ် nah:Tlapōhualli nl:Getal (wiskunde) nn:Tal no:Tall nov:Nombre nrm:Neunmétho oc:Nombre pl:Liczba pnb:نمبر pt:Número qu:Yupay ro:Număr roa-tara:Numere ru:Число sah:Ахсаан scn:Nùmmuru sg:Nömörö sh:Broj simple:Number sk:Číslo (matematika) sl:Število sq:Numri sr:Број su:Wilangan sv:Tal (matematik) ta:எண் te:సంఖ్య tg:Адад th:จำนวน tl:Bilang tr:Sayı tt:Сан uk:Число ur:عدد uz:Son vec:Nùmaro vi:Số (toán học) war:Ihap xal:Тойг yi:צאל yo:Nọ́mbà zh:数 zh-min-nan:Sò͘-ba̍k zh-yue:數