الفرق بين المراجعتين لصفحة: «نظرية المصفوفات»

من موسوعة العلوم العربية
اذهب إلى التنقل اذهب إلى البحث
 
ط (١ مراجعة: الصفحات في تصنيف رياضيات)
 
(لا فرق)

المراجعة الحالية بتاريخ 21:16، 12 نوفمبر 2010

نظرية المصفوفات هي فرع الرياضيات الذي يركز على دراسة المصفوفات. فعليا يعتبر أحد فروع الجبر الخطي, ثم نمى ليغطي موضوعات ذات علاقة بنظرية المخططات والجبر, والتوافقيات والإحصاء.

المصفوفة تمثل منظومة (array) مربعة (rectangular) من الأرقام. راجع مقال مصفوفة .

تم ابتكار مصطلح المصفوفة لاول مرة في سنة 1848 عن طريق جى.جى.سلفستر كإٍسم لمجموعة مرتبة من الأرقام. في 1855, قدم ارثر كايلي المصفوفة على أنها تمثيل لعناصر خطية. هذه الفترة اعتبرت بداية الجبر الخطى ونظرية المصفوفات. دراسة فضاء المتجه على المجال المحدد, فرع من الجبر الخطى يفيد في نظرية التشفير, يقود طبيبعيا إلى دراسة واستخدام المصفوفات عن المجال المحدد في نظرية التشفير.

الوحدة هو تعميم لفضاء المتجه. من الممكن اعتباره فضاء المتجه على حلقة. وهذا يؤدى إلى دراسة المصفوفات حول الحلقة. نظرية المصفوفات في هذه المنطقة لا تعتبر فرع من الجبر الخطى. بين النتائج الموجودة ضمن نظريات مفيدة ونظرية كايلى هاملتون تكون قابلة إذا كانت الحلقة الواقعة تبادلية, شكل سميث الطبيعي قابل لو كانت الحلقة الواقعة هي مجال مثالى رئيسي, لكن الآخرين قابلين فقط للمصفوفات ذات الأرقام المركبة أو الأرقام الحقيقية.

تعريفها

تعرف المصفوفة بانها جدول من العناصر هذه العناصر التي تحتويها المصفوفة قد تكون اعدادا حقيقيه أو اعداد مركبه وقد تكون دوال وهى صورة رياضية لوضع الارقام فى جدول .

حيز المصفوفة

هو عدد الصفوف والأعمدة المكونة لهذه المصفوفة التي تحتوى على من M الصفوف وN من الأعمدة والحيز m*n وتكتب (A (m*n

أنواعها

  • مصفوفه الصف.
  • مصفوفه العمود.
  • المصفوفة المربعة.
  • المصفوفة المثلثية العليا.
  • المصفوفة المثلثية السفلى.
  • المصفوفة الصفرية.
  • المصفوفة القطرية.
  • مصفوفه الوحدة.


en:Matrix theory es:Teoría de Matrices fr:Théorie des matrices it:Teoria delle matrici zh:矩陣理論